A student using a computer

Accreditations


Course Summary

This course is accredited by BCS, The Chartered Institute for IT, for the purposes of partially meeting the academic requirement for registration as a Chartered IT Professional.

Whilst studying this course, you will have multiple opportunities to develop and deepen the knowledge, skills, and hands-on experience necessary to excel in the dynamic and ever-evolving field of computer science.

Our course focuses on the strengths within the School of Computer and Engineering Sciences, providing a cutting-edge curriculum in robotics, cybersecurity, AI, and user experience, in addition to core computer science topics such as algorithm design. 

There is a regular seminar programme in which leading experts present recent findings and introduce contemporary developments in the above and other areas. 

Why you'll Love it


What you'llStudy

The course has a core theme addressing advanced issues in software and algorithmic development, enabling you to deal with complex problems using a wide range of contemporary techniques. The development of a rigorous approach to research and original enquiry will be fostered in our Research Methods and Research Dissertation modules.

Module content:

  1. Projects which will involve the application of methods and equipment introduced in taught modules, will be based on subjects agreed in principle with the Postgraduate Dissertation Coordinator and potential supervisors.
  2. The research dissertation may be University-based or carried out in the employer’s workplace, or through a work placement where a local organisation has a direct role in facilitating the project.

Module aims:

To afford students the opportunity to experience the complete life-cycle of a successful and significant research-based project

To provide real-world experience of meeting the requirements of academic and professional standards, including high-level writing and referencing skills.

To demonstrate to peers and to current and potential employers the student’s ability to carry out good quality academic research, in a particular field, which is relevant to their programme of study. This may involve the application of existing research within a novel context.

Module content:

To include:

  • Time management, library skills and literature search
  • Evaluation of information sources
  • Critical analysis of information
  • Ethical issues in science, technology and engineering research (including intellectual property and plagiarism)
  • Writing for research: styles and rules for presentation (including referencing standards)
  • Choosing a research area and evaluating source material
  • Hypothesis formation
  • Research approaches and methodologies
  • Design and application of questionnaires & interviews
  • Quantitative and statistical tools for researchers (e.g. R, Python, SPSS)

Module aims:

  • To clarify the distinctions between undergraduate and postgraduate level work and expectations
  • To increase students' experience in order to conduct a professional study and to use sampling procedures and analysing techniques.
  • To improve students' appreciation of time management and how to conduct a literature search
  • To reinforce students' research skills
  • To consolidate students' appreciation of professional issues such as copyright and ethics

Module content:

  • Applying advanced knowledge of user-centred design principles
  • Information architecture
  • Progressive enhancement
  • Applying user interface design patterns to professional standards
  • Multidisciplinary design activities, problem-solving and design iteration
  • Advanced usability testing and evaluation
  • Issues in UX and emerging technologies

Module aims:

  • To demonstrate effective use of advanced user-centred design methodologies
  • To design standards-driven and scalable information architecture for interactive systems
  • To apply progressive enhancement techniques
  • To participate in professional team-based design sprints
  • To undertake advanced usability testing and evaluation of interactive systems

Module content:

The module draws on the research expertise and investment in virtual reality hardware that exists within the Department of Computer Science to instruct students in an exciting area of computer science that is growing in commercial importance. The module content will include lecture material on:

How virtual environments work; seeing in 3D; Presence and Immersion. Social and ethical considerations.

Characteristics of displays.

Content creation for Virtual Environments.

Input and output devices.

Real time Interaction.

Augmented Reality.

Case studies from medical, oil and gas industry, manufacturing, car design, entertainment industry, and more.


Module aims:

To study the technology elements needed to build and interact with a Virtual Environment. To provide an overview of Human Perception and how it works. The technologies discussed will be illustrated by a series of state-of-the-art case studies and hands-on demonstrations.

The course has been designed to conform with the QAA Subject Benchmark Statement for Computing (2011) and delivers specialised instruction in the subject matter that  contributes to improving a student's computing-related cognitive skills, computing-related practical skills, and generic skills for employability. The module covers a greater range and depth of specialist knowledge than that that would be obtained at Bachelor degree level and provides a unique opportunity to design and develop real time 3D content that utilises a person's natural senses and skills.

Module content:

Computability, Time and space complexity, asymptotic notation, polynomial and exponential time

Determinism, Nondeterminism, Complexity classes including P, NP, Co-NP, the polynomial time hierarchy and PSPACE

Reductions, proofs and practical case studies

Algorithmic approaches such as meta-heuristics, natural computation and mathematical programming


Module aims:

By the end of this module, students should be able to apply a range of problem solving techniques and to analyse the performance of such techniques with regard to resource consumption and accuracy. Students will gain a grasp of the limits of computation and of the complexity of both theoretical and real word problems as well as learning how to adjust problem solving processes to tackle highly complex scenarios.

Module content:

The module draws on the research expertise in bio-inspired computing that exists within the Department of Computer Science to instruct students in an exciting area of computer science that is growing in research and commercial importance. The module content will include lecture material on:

-Evolutionary and genetic algorithms.

-Swarm behaviour

-Cellular automata 

-Chaos and fractals

-Neural computation

-Agent based models

-Complex adaptive systems

-Biologically inspired optimisation and behaviour search


Module aims:

To study elements of bio-inspired computing techniques which can be applied in simulation and modelling. To provide an overview of existing platforms and frameworks for bio-inspired computing. To gain experience and practical application of research and development techniques related to bio-inspired computing.

Module content:

  • Evolution of Robotics
  • Microcontrollers: Arduino and Raspberry Pi
  • Computer Vision
  • Agents and Multi-Agent Systems
  • Machine learning and robotics

Module aims:

  • To introduce the concept of artificial intelligence (AI) and to evaluate its role in the development of robotics.
  • To introduce theoretical approaches to the development of intelligent robots.
  • To undertake practical tasks to demonstrate how AI techniques can be implemented for robotics.
  • To analyse methods for designing and deploying robotic systems.
  • To critically evaluate the ways in which intelligent robots can be used in real world situations

Module content:

  • Digital system forensics
    • Disk
    • Memory
    • Mobile
    • Cloud
  • Live forensics
  • Encryption and obfuscation
  • Malware analysis and investigation
  • Network forensics
  • Anti-forensics
  • Methodologies, approaches, and techniques
  • Cyber Threat Intelligence and attribution
  • Incident Response
  • Ethical issues in digital forensics and incident response

Module aims:

This module aims to introduce the student to the need for and uses of digital forensics and incident response from an organisational security perspective.

The aim of this module is to introduce, study, understand and practice digital forensics techniques, and to understand the limitations of common techniques.  It aims to develop in the student an appreciation and understanding of anti- and counter-forensics, including falsification of data.  Finally, it aims to build the students' understanding of malware, how it operates, and practices to deal with it.

Students will gain an understanding of Incident Response and Cyber Threat Intelligence.

Module content:

  • Network security and attacks
  • The current threat landscape
  • Social engineering
  • Penetration testing tools
  • Active defence
  • Threat hunting
  • Defensive strategies and tools 
  • Hack back and the legal implications
  • Hacker tools
  • Penetration testing; methodologies, approaches, and techniques
  • Penetration test reporting
  • Ethical issues in penetration testing and active defence

Module aims:

This module aims to:

  • introduce the student to the need for and uses of penetration testing and active defence from an organizational security perspective;
  • introduce, study, understand and practice active defence and the limitations of common techniques. This will also look at relevant tools and the legal aspect of 'hack back';
  • help the student study, understand, and practice penetration testing techniques, developing skills in 'access' over networks, and how attackers look at a target; 
  • the relevant skills, knowledge and usage of hacker tools and how to stop/deter attackers

These will be built upon to allow the student to better understand network and holistic defenses and to be able to design secure interconnected systems.

Module content:

Embedded Systems and Field Programmable Gate Array (FPGA) Technology

  • Concurrent assignment statements and unintended memory
  • Adopting proper hardware description language (HDL) coding style and taking a divide and conquer approach for code development
  • The need for design simplification.
  • Regular sequential circuit block system and registers 
  • Building test-benches for sequential circuits
  • Timing, clocking, operating frequency and clock tree considerations
  • The Finite-state machine (FSM), its representation and FSM HDL code development
  • The Finite-state machine with data path (FSMD), its representation and FSM HDL code development

Internet of Things (IoT)

  • Automatic Identification Technology and Radio-frequency identification (RFID)
  • Wireless Sensor Network
  • Location System
  • Internet and Mobile Internet
  • Wireless Access Technology
  • Big Data, IoT & Cloud Computing
  • Information Security for IoT
  • IoT Application Case Studies
  • Arduino Opla, Espressif System on Chip (SoC) & Raspberry Pi IoT technologies

Module aims:

The Embedded Systems part of this module aims to develop the skill in students of digital systems design with the VHDL hardware description language (HDL) and Field Programmable Gate Array (FPGA) reprogrammable and fast prototyping technologies. Students will be able to produce design, synthesis of circuits and implement system on chip (SoC) using modern electronic design automation (EDA) tools.

The Internet of Things (IoT) contents aim to develop the advanced practical skills in building and designing IoT related components and network systems, going from the sensors layer to the cloud processing. This part also develops expertise in the use of a hardware/software tools to create and simulate practical systems, considering big data, energy consumption control and network security aspects.

Who you'll Learn from

Dr Stuart Cunningham

Senior Lecturer
Dr Stuart Cunningham

Dr Mike Morgan

Senior Lecturer
Dr Mike Morgan

Ashley Wood

Lecturer
A dark grey silhouette on a light grey background

Dr Richard Stocker

Senior Lecturer
Dr Richard Stocker

Dr Nabeel Khan

Senior Lecturer
A dark grey silhouette on a light grey background

Prof Bin Yang

Programme Leader for Electronic and Electrical Engineering MSc; Professor
Prof Bin Yang

How you'll Learn

Teaching

You will be taught using a mixture of lectures, workshops, seminars and case studies.

Optional modules cover a range of applied topics where the Department has expertise, including robotics, virtual reality, embedded systems, biological computing and cybersecurity.

Assessment

Assessment takes place using roughly 30% exams and 70% coursework, although the precise ratio depends on module choices.

Entry Requirements

2:1 honours

Students are normally required to have a 2:1 honours degree or above in a computer science related discipline. It is also required that any student wishing to enrol on this course must have gained at least 20 credits of programming modules at Level 5 or above.

2:1 honours degree

Students are normally required to have a 2:1 honours degree or above in a computer science related discipline. It is also required that any student wishing to enrol on this course must have gained at least 20 credits of programming modules at Level 5 or above.

English Language Requirements

For those who do not have IELTS or an acceptable in-country English language qualification, the University of Chester has developed its own online English language test which applicants can take for just £50.

For more information on our English Language requirements, please visit International Entry Requirements.

Where you'll Study Exton Park, Chester

Fees and Funding

£10,215 per year (2024/25)

Guides to the fees for students who wish to commence postgraduate courses in the academic year 2024/25 are available to view on our Postgraduate Taught Programmes Fees page.

£14,750 per year (2024/25)

The tuition fees for international students studying Postgraduate programmes in 2024/25 are £14,750.

The University of Chester offers generous international and merit-based scholarships for postgraduate study, providing a significant reduction to the published headline tuition fee. You will automatically be considered for these scholarships when your application is reviewed, and any award given will be stated on your offer letter.

For more information, go to our International Fees, Scholarship and Finance section.

Irish Nationals living in the UK or ROI are treated as Home students for Tuition Fee Purposes.

Your course will involve additional costs not covered by your tuition fees. This may include books, printing, photocopying, educational stationery and related materials, specialist clothing, travel to placements, optional field trips and software. Compulsory field trips are covered by your tuition fees.

If you are living away from home during your time at university, you will need to cover costs such as accommodation, food, travel and bills.

The University of Chester supports fair access for students who may need additional support through a range of bursaries and scholarships. 

Full details, as well as terms and conditions for all bursaries and scholarships can be found on the Fees & Finance section of our website.

Your Future Career

Careers service

The University has an award-winning Careers and Employability service which provides a variety of employability-enhancing experiences; through the curriculum, through employer contact, tailored group sessions, individual information, advice and guidance.

Careers and Employability aims to deliver a service which is inclusive, impartial, welcoming, informed and tailored to your personal goals and aspirations, to enable you to develop as an individual and contribute to the business and community in which you will live and work.

We are here to help you plan your future, make the most of your time at University and to enhance your employability. We provide access to part-time jobs, extra-curricular employability-enhancing workshops and offer practical one-to-one help with career planning, including help with CVs, applications and mock interviews. We also deliver group sessions on career planning within each course and we have a wide range of extensive information covering graduate jobs and postgraduate study.